

Digital Conversion

"Successful conversion from film to Computed Radiography"

GE Inspection Technologies

Content:

- Digital Conversion
- Digital Conversion Benefits

Digital Conversion

Radiographic Examination

Why converting to Digital Radiography..?

For the same reasons as why commercial and private photographers are going for digital imaging:

- Speed Instant Imaging No consumables No Film Development Process
- Digital Image Enhancement Imaging Tools
- Easy Data managing Fast Data Sharing with others
- No Environmental issues
- Easy, Trendy, etc..

Digital conversion...Why now?

- Technology is available
- International Standards released
- Required quality can be achieved
- Recently developed Computer hard- & software adds tremendous value to digital solutions
- New applications are conceivable

Go digital...improve efficiency & accuracy

Create Digital Images

Film Digitizer

Computed Radiography scanners read CR plates to create digital images

Film Digitizers scan

CR Scanners

Direct Radiography provides 'instant' digital images

DR Detectors

DR & Automation create additional efficiencies

Automated Solutions

Manage Digital Images

- Receives digital images from the Image Acquisition Station
- Allows location of defect indications
- Adds inspection results to images
- Saves results on archive media
- Connects to customer network for information storage or transmission

Conventional Film Radiography

• Film "With or without Pb intensifying screens"

STRUCTURIX quality... rugged performance

Film	Characteristics	Applications
	extremely fine grain film with high	electronic components,
D2	contrast, ideal for exposures	composite materials
	requiring finest possible detail	castings (light metals and alloys)
	renderni	multiple film techniques
D3 s.c.	Single coated film with high image quality, high contrast and pleasant image tint	electronic components,
		composite materials
		neutron radiography
		inspections, whereby optical enlarg
D3	Ultra fine grain film with high contrast.	electronic components,
		composite materials
		castings
		very high quality welds
D4	Extra fine grain film with very high contrast, suitable for wide variety of x-ray applications	electronic components,
		composite materials
		castings
		very high quality welds
D5	very fine grain film with high contrast, excellent for visualisation of discontinuities	weldings
		castings
		shipbuilding
		aerospace and aircraft indus
D7	Fine drain film with high contrast	weldings
		castings
		defence industry
		composite materia
D8	Medium grain film with high contrast and very high speed	concrete and heavy construction work
		castings
		multiple film techniques

Conventional Film Radiography

Set Up

Film

Exposure - X-ray or Isotope

Computed Radiography

Exposure - X-ray or Isotope

CRx Flex

Rhythm Software WS

Phosphor screen captures the image...

- Same exposure process as film
- Highly portable & flexible
- Reusable

CR versus Film

Feature & Benefits

Lower Doses

- Smaller Safety perimeters
- Shorter plant shut-downs
- Smaller isotopes / longer lifetime
- Easily availability digital images and data
 - Data and images together on network
 - Easier and faster analysis of defects
 - Lower risk of lost data
- Light and robust Phosphor plates & Cassettes
 - Can keep same workflow the customer is used to
- Flexible Imaging Plates
 - Plates can be bent

CR versus Film

. . .

Feature & Benefits

- Shorter exposure times (10-50 % D7)
 - Time efficiency for resources, plant shut down, higher throughput
- Higher Dynamic Range
 - Less retakes by bad exposure, different thicknesses in one shot
- Reusable Phosphor plates
 - No film needed: consumable cost saving
- No energy limitations
 - Wide range of applications
- No chemicals, no darkroom
 - Less expensive infrastructure (No EHS issues)

Data Sharing Scenarios

Scenario 1: Share data from Rhythm[™] Review workstation to any other PC

- Utilize CD/DVD viewer
- Full fidelity image
- Some analysis tools
 - Window level / Zoom
 - Line measurement
 - Angle measurement

Data Sharing Scenarios

Scenario 2: Share data between Rhythm[™] Review workstations

 Utilize "workflow rules" to automatically route images (e.g., send all "rejected" images to engineering)

Data Sharing Scenarios

Scenario 3: Share data using Rhythm[™] Archive

- All studies are stored centrally
 - no need to "query" individual Rhythm Review stations to find the right study
- Larger, long-term storage
 - Without central archive, at some point studies are removed from individual review stations (archived to CD/DVD)
 - Therefore, they are not easily accessible by remote location
- Workflow rules may be used to automatically route, archive, and delete images (from local review stations)
- Full Review and analysis capabilities

Key advantages

• Ease of Use

Streamlined user interface, customizable toolbars, short cut keys.

• Multi-modality

One application for multiple modalities RT, VT, UT, ET,...

- **DICONDE**....really DICONDE, which allows the image to be a complete report in itself DICONDE is an international standard that provides a common platform for users when dealing with NDE images
- Leverage GEHC technology developed over the past 11 years
- Scalable architecture, customer can add components when the need is there..
- Application specific tools, e.g. defect dept measurement, area measurement tools, ...

Digital Conversion Benefits

How can digital technology benefit your operation?

Two major classes of efficiency improvement:

- Operational
- Financial

All improvements provide value by enhancing ultimate mission of "flying more at reduced costs"!

Value from Operational Benefits

Time and Productivity:

- Additional Throughput
- Reduced Cycle Time (e.g.,)
 - Process Simplification ...
 Eliminating Steps in the Process

Expected Benefits:

50% reduction in process steps

 Reducing Time to Perform Tasks 10x improvement in exposure time

Quality:

Probability of Detection ...
 Equivalent to Film in Targeted

 100% equivalence in defect indication detectability

Applications Improved speed/quality trade-off allows realization of benefits

Value Analysis – Financial Benefits

Customer's Income Statement

Customer's Balance Sheet

Cash Receivables Inventories Other Assets	20 250 300 <u>500</u>
Total Assets	1,070
Trade Payables Other Liabilities	280 190
Borrowings/Debt	<u>300</u>
Equity	300

- 1. Reduced Inspection Labor
- 2. Reduced Rework Labor
- 3. Reduced Variable Manufacturing Overhead Film and Chemicals Procurement, Handling & Storage

1. Reduced Dark Room Maintenance

- 1. Faster Cycle Time...Less WIP Inventory and Carrying Costs
- 2. Reduced Film and Chemical Inventory

Financial Metrics: Representative Customer Experiences

- 1. Net Present Value (NPV) 2 Times Initial Investment
- 2. Internal Rate of Return (IRR) 30% IRR
- 3. < 1 to 2 Year Payback Period

Every Customer is unique...requires value analysis

GE imagination at work